Yamaguchi, K. (1987). XPACK. Programs for X-ray Parameters Report. Showa Univ., Tokyo, Japan.

- Yao, J.-X., Zheng, C.-D., Qian., J.-Z., Han, F.-S., Gu, Y.-X. & Fan, H.-F. (1985). SAP185. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Institute of Physics, Chinese Academy of Sciences, Beijing, People's Republic of China.
- Yüntsen, H., Ohkuma, K., Ishii, Y. & Yonehara, H. (1956). J. Antibiot. 9A, 195-201.

Acta Cryst. (1994). C50, 1474-1480

Three 1,3,4-Trisubstituted β -Lactam Antibiotics

ANGÈLE CHIARONI, CLAUDE RICHE, JOSEFA ANAYA, ALICE GATEAU-OLESKER, STEPHAN D. GÉRO AND JOSÉ I. M. HERNANDO

Institut de Chimie des Substances Naturelles, CNRS, 91198 Gif sur Yvette CEDEX, France

(Received 5 January 1994; accepted 4 February 1994)

Abstract

Monobactams (2-azetidinones) are four-membered cyclic amides which exhibit very important antibacterial properties, as well as β -lactamase- and elastaseinhibitory activities. A stereoselective asymmetric synthesis of 1,3,4-trisubstituted and 3,4-disubstituted 2azetidinones was performed using D-glucosamine as the chiral auxiliary via a Staudinger [2+2] cycloaddition. The absolute stereochemistries at C3 and C4 of three of these potential therapeutic substances: $2-[1-{(1,3$ dithian-2-yl)[2,2,2',2'-tetramethyl-4,4'-bi(1,3-dioxolanyl)-5-yl]methyl}-2-oxo-4-(E)-styrylazetidin-3-yl]isoindol-1,3-dione, (1), 1-{(1,3-dithian-2-yl)[2,2,2',2'-tetramethyl-4,4'-bi(1,3-dioxolanyl)-5-yl]methyl}-3-methoxy-4-(E)-styrylazetidin-2-one, (2), and 3-butyl-1-{(1,3dithian-2-yl)[2,2,2',2'-tetramethyl-4,4'-bi(1,3-dioxolanyl)-5-yl]methyl}-4-[1-methyl-(Z)-styryl]azetidin-2-one, (3), have been established by X-ray diffraction analyses. The four-membered ring is quite planar in compounds (1) and (3), but slightly bent in (2). The arrangement of the substituents in the vicinity of the lactam ring is similar in (1) and (3), but in (2) the dithiane ring is rotated around the N1-C2' bond by approximately 120°.

Comment

Monobactams (2-azetidinones) are four-membered cyclic amides. They exhibit very important antibacterial properties, as well as β -lactamase- and elastaseinhibitory activities (Mascaretti, Roveri & Danelon,

©1994 International Union of Crystallography Printed in Great Britain - all rights reserved

1993; Firestone, Barker, Pisano, Ashe & Dahlgren, 1990; Maillard et al., 1990; Hagmann et al., 1991, 1992). They have also been reported as potential hypocholesterolemic agents (Burnett et al., 1991) and trombin inhibitors (Han, 1990). Recently, we published (Barton et al., 1990; Adonias et al., 1993) an asymmetric synthesis of 1,3,4-trisubstituted and 3,4-disubstituted 2-azetidinones, using D-glucosamine as chiral auxiliary, via a Staudinger [2+2] cycloaddition. The compounds (1), (2) and (3) were prepared in good overall yields according to the scheme below. Complete diastereospecificity was observed for compounds (1) and (3), while a 2:1 mixture of two cis-monobactams was obtained in the synthesis of (2). The cis orientation of the substituents

1474

Yamaguchi, K. (1993). Chem. Pharm. Bull. 41, 424-429.

Acta Crystallographica Section C ISSN 0108-2701 ©1994

at C3 and C4 was evident from NMR data. However, in order to prove unequivocally the absolute stereochemistry at C3 and C4, the X-ray structure determinations of (1), (3) and the major isomer of (2) were carried out.

The molecular structures for compounds (1), (2) and (3) are shown in Figs. 1, 2 and 3, respectively. The absolute configuration was clearly established as β at C3 and C4. For all compounds, bond distances and angles in the lactam ring are almost identical. However, the fourmembered ring is quite planar in compounds (1) and (3)

Fig. 1. Perspective view of (1).

Fig. 2. Perspective view of (2). The disorder of one of the isopropylidene rings (minority position) is not represented.

Fig. 3. Perspective view of (3).

Fig. 4. Superimposition of the three molecules (atoms N1, C2 and C3 are superimposed).

(mean deviations of 0.011 and 0.06 Å, respectively) but slightly bent in (2) (mean deviation of 0.06 Å, dihedral angle 13°). The configuration at the N atom is nearly planar in (1) and (2), while it is more pyramidal in (3), the sum of the three bond angles being 356, 359 and 348°, respectively. The arrangement of the substituents in the vicinity of the lactam ring is similar in (1) and (3), while in (2) the dithiane ring is rotated around the N1—C2' bond [torsion angle C2—N1—C2'—C1' 106.4 (5) for (1), -39.5 (4) for (2) and 89.4 (3)° for (3)]. Thus, the C2'—H bond eclipses the N1—C2 bond in compounds (1) and (3) (torsion angle C2—N1—C2'— H2' -11 and -30°, respectively) while in compound (2) it eclipses the N1—C4 bond (C2—N1—C2'—H2' -158, C4—N1—C2'—H2' 9°). In Fig. 4, where the

0.6369 (7)

0.5652 (6)

0.5356 (6)

0.5664 (5)

0.2484 (5)

0.1139 (6)

0.0494 (6)

0.6009 (4)

0.5307 (3)

0.4666 (3)

0.4623 (2)

0.4027 (3)

0.4221 (3)

0.4963 (3)

0.5206 (3)

0.5280 (2)

0.4883 (2)

0.4400(1)

0.4295 (2)

0.4383 (2)

0.4223 (2)

C1'—S2—C25 N1—C2'—C1'

N1-C2'-C3'

131.7 (5)

135.6 (5)

110.8 (3)

113.4 (3)

0.077 (7)

0.054 (5)

0.053 (5)

0.068 (4)

0.044 (4)

0.053 (5)

0.056 (5)

C12 three molecules are superimposed, it can be seen that the C12 C13 C14 orientation of the styryl chain at C4 is very similar in (1) and (2) [torsion angle N1–C4–C β –C α 148.1 (6) 014 C15 for (1), 120.7 (6) for (2) and 152.0 (4)° for (3), C β and C16 $C\alpha$ labelling the double bond], and that there is no steric C17 hindrance between the substituents fixed at C3 and C4. C18

0.6266 (4)

0.6486 (4)

0.6007 (8)

0.6535 (8)

C10

C11

hindrance between the substituents fixed at C3 and C4.				C18	0.1219 (7)	0.5646	(3) 0.4117 (3)	0.070 (6)	
					C19	0.0562 (8)	0.6312	(4) 0.3927 (3) (5) 0.2820 (2)	0.087 (8)
					C20 ·	-0.0854 (9)	0.0319	(5) $0.3830(3)(5)$ $0.3940(4)$	0.093 (9)
Exper	imental				C22 ·	-0.0971 (6)	0.4990	(4) 0.4140 (3)	0.072 (7)
Compo	ound (1)				C1′	0.3129 (5)	0.1750	(2) 0.3713 (2)	0.047 (4)
Crystal	l data				S1	0.3367 (2)	0.1204	(1) $0.4353(1)$	0.059 (1)
<i>ci jsiu</i>		~ .			52 C2'	0.3043 (2)	0.1106	(1) 0.3120(1) (2) 0.3654(2)	0.000(1) 0.038(4)
C ₃₄ H ₃₈	$N_2O_7S_2.C_4H_8O_2$	Cu I	α radiation		C3'	0.4041 (4)	0.2887	(2) 0.3119 (2)	0.037 (4)
$M_r = /$	38.92	$\lambda =$	1.5418 A		03'	0.2714 (3)	0.3285	(2) 0.3112 (1)	0.043 (3)
Orthor	nombic	Cell	parameters fro	om 25	C4'	0.5095 (5)	0.3552	$\begin{array}{ccc} (2) & 0.3017(2) \\ (2) & 0.3747(1) \end{array}$	0.042 (4)
$P2_{1}2_{1}2_{1}2_{1}2_{1}2_{1}2_{1}2_{1}$	1	re	flections		04 C5'	0.4284 (3)	0.4140	$\begin{array}{ccc} (2) & 0.2/4/(1) \\ (3) & 0.2652(2) \end{array}$	0.057 (3)
a = 9.5	018 (8) A	$\theta = 0$	5.2-40.4		05'	0.6992 (4)	0.2649	$\begin{array}{c} (2) \\$	0.063 (4)
b = 16	.941 (12) A	μ =	1.64 mm ⁻¹		C6′	0.7475 (6)	0.3919	(3) 0.2588 (3)	0.069 (6)
c = 24.	.261 (18) A	T =	293 K		O6'	0.8686 (4)	0.3440	(2) 0.2531 (2)	0.068 (4)
V = 39	12.0 (51) A ³	Prist	n	-	C23	0.4945 (7)	0.0676	$\begin{array}{ccc} (3) & 0.4213(2) \\ (3) & 0.3696(3) \\ \end{array}$	0.071 (6)
Z = 4		0.45	$\times 0.35 \times 0.2$	25 mm	C25	0.4710 (8)	0.0632	(3) 0.3166 (2)	0.079 (7)
$D_x = 1$.25 Mg m ^{-3}	Colc	ourless		C26	0.2854 (5)	0.3880	(3) 0.2701 (2)	0.050 (4)
					C27	0.1893 (6)	0.4561	(3) 0.2838 (2)	0.065 (6)
Data c	ollection				C28	0.2596 (6)	0.3560	$\begin{array}{ccc} (3) & 0.2133(2) \\ (3) & 0.2883(2) \\ \end{array}$	0.065 (6)
Philips	PW100 diffracto	me- θ_{max}	= 67.85°		C29	0.8485 (5)	0.2773	$\begin{array}{ccc} (3) & 0.2883(2) \\ (4) & 0.3456(3) \end{array}$	0.034(3)
ter		h = 1	$0 \rightarrow 11$		C31	0.9183 (7)	0.2073	(4) 0.2631 (3)	0.082 (7)
$\theta/2\theta$ so	ans	k = 0	$0 \rightarrow 20$		C32	0.5131 (10)	0,1401	(6) 0.1664 (4)	0.120 (11)
Absor	tion correction:	l = 1	$0 \rightarrow 29$		C33	0.5265 (9)	0.1971	(5) 0.1235 (4)	0.102 (10)
none	•	3 sta	ndard reflection	ons	034	0.6292 (10)	0.2130	$\begin{array}{ccc} (8) & 0.1023 (6) \\ (4) & 0.1058 (2) \\ \end{array}$	0.353 (29)
3984 n	neasured reflection	ns fr	equency: 180	min	C36	0.4143(0) 0.4239(11)	0.2314	(4) 0.1038(2) (6) 0.0643(4)	0.109(7) 0.116(11)
3984 ii	ndependent reflec	tions in	tensity variation	on: none	C37	0.2848 (13)	0.3197	(7) 0.0509 (4)	0.147 (15)
2790 o	bserved reflection	18	·····						_
[<i>I</i> >	$3.0\sigma(I)$]				Table	2. Selecte	ed geomet	ric parameters (À	Å,°) for
							compoi	und (1)	
Refiner	nent				N1-C2		1.351 (6)	C1'—\$1	1.821 (4)
Refiner	ment on F	$(\Delta/$	σ) _{max} = 0.03		N1-C4		1.489 (6)	C1'—S2	1.807 (4)
R = 0.0)48	$\Delta \rho_{\rm m}$	$hax = 0.20 \text{ e} \text{ Å}^2$	-3	N1-C2'		1.453 (5)	C1'-C2'	1.552 (6)
wR = 0).064	$\Delta \rho_{\rm m}$	$_{\rm in} = -0.34 \ {\rm e}$	Å ⁻³	$C_2 = C_3$ $C_2 = 05$		1.206 (7)	S1	1.782 (7)
S = 0.9	95	Exti	nction correcti	on: none	C3-C4		1.579 (6)	C2'—C3'	1.523 (6)
2785 re	eflections	Ator	nic scattering	factors	C3—N6		1.446 (6)	C3'O3'	1.432 (5)
289 pa	rameters	fre	om Internation	nal Tables	C4C15		1.475 (6)	C3' - C4' O3' - C26	1.528 (6)
H-aton	n parameters not	fo	r X-ray Crysta	allography	N6-C14		1.394 (6)	C4' - 04'	1.427 (5)
refin	ed	(1	974, Vol. IV,	Table	C7—07		1.203 (7)	C4'—C5'	1.504 (6)
Calcula	ated weights	2.	2B)		C7—C8		1.487 (7)	04′—C26	1.438 (6)
w =	$1/[\sigma^2(F)]$				C8-C9		1.383 (7)	C5' - 05'	1.421 (6)
	$+ 0.002932F^2$]				C9-C10		1.387 (9)	C5 – C0 O5' – C29	1.436 (6)
					C10-C11		1.379 (10)	C6'O6'	1.416 (7)
Table	1. Fractional	atomic coor	dinates and	equivalent	C11_C12		1.387 (9)	O6'—C29	1.430 (6)
isotro	pic displacemen	t parameter	s (Ų) for cor	npound (1)	C12—C13		1.382 (8)	C23—C24	1.526 (8)
	-				C14014		1.211 (6)	C24C25 C26C27	1.509 (7)
	$U_{\rm eq} = 0$	$(1/3)\Sigma_i\Sigma_jU_{ij}a$	$a_i^+ a_j^- \mathbf{a}_i \cdot \mathbf{a}_j$.		C15-C16		1.339 (7)	C26—C28	1.501 (7)
	x	у	Z	$U_{ m eq}$	C16C17		1.452 (7)	C29—C30	1.492 (8)
N1	0.4228 (4)	0.2923 (2)	0.4142 (1)	0.038 (3)	CI7-CI8		1.3/2(8)	C29-C31 C32-C33	1.491 (9)
C2	0.5227 (6)	0.2943 (3)	0.4537 (2)	0.050(5)	C18—C19		1.370 (9)	C33	1.136 (14)
C4	0.3090 (5)	0.3273 (2)	0.4484 (2)	0.042 (4)	C19-C20		1.368 (11)	C33O35	1.290 (10)
05	0.6415 (4)	0.2696 (2)	0.4546 (2)	0.069 (4)	C20-C21		1.364 (11)	O35—C36	1.446 (11)
N6	0.4629 (4)	0.4085 (2)	0.5174 (1)	0.047 (4)	C21-C22		1.307 (10)	c_{30} $c_{3}/$	1.439 (10)
07	0.4444 (6)	0.4307 (3)	0.5726 (2)	0.057 (5)	C2-N1-C	4 2'	96.1 (3) 126 7 (4)	S1 - C1' - C2' S2 - C1' - C2'	111.8 (3) 113 7 (3)
C8	0.5122 (6)	0.5094 (3)	0.5782 (2)	0.053 (5)	C4-N1-C	2'	133.0 (3)	C1'-\$1-C23	101.4 (2)
	0.5000 (7)	0 5562 (2)	0 6245 (2)	0.060 (6)	N1 C2 C	2	026(4)	C1/ 52 C25	100 5 (2)

0.080(7)

0.087 (8)

0.6173 (3)

0.5666 (3)

N1-C2---05

C3-C2-O5

ANGÈLE CHIARONI et al.

C2C3C4	85.7 (3)	C1'-C2'-C3'	112.5 (3)	Data co	ollection			
C2-C3-N6	117.3 (4)	C2' - C3' - 03'	110.4 (3)	Philips	PW100 diffract	ome-	$\theta_{max} = 67.93^{\circ}$	
C4C3N6	856(3)	$C_2^{\prime} = C_3^{\prime} = C_4^{\prime}$	110.3 (3)	ter			$h = -10 \rightarrow 9$	
NI-C4-C15	117.1 (4)	$C_{3}^{\prime} - C_{3}^{\prime} - C_{26}^{\prime}$	105.0 (3)	A/2A sc	ans		$k = -11 \rightarrow 11$	
C3-C4-C15	116.7 (4)	C3'-C4'-O4'	103.8 (3)	Absorn	tion correction:		$l = 0 \rightarrow 12$	
C3-N6-C7	124.0 (4)	C3'-C4'-C5'	113.4 (4)	non	dion concention.		$7 = 0 \rightarrow 12$	tions
C3-N6-C14	125.0 (4)	04'-C4'-C5'	109.3 (3)	2562 m	; 		frequenciu 190) min
C7—N6—C14	110.8 (4)	C4' - O4' - C26	109.1 (3)	2562 n	leasured renection	ons	frequency: 180	
N6_C7_C8	124.0 (5)	C4 = C5 = 05	109.4 (4)	2562 11	idependent refie	ctions	intensity varia	tion: none
07 - 07 - 08	129 4 (5)	05' - 05' - 06'	103.5 (4)	2393 o	bserved reflection	ons		
C7-C8-C9	129.7 (5)	C5'-05'-C29	110.0 (4)	[I >	$3.0\sigma(I)$]			
C7-C8-C13	108.3 (4)	C5'-C6'-O6'	102.8 (4)					
C9-C8-C13	122.0 (5)	C6'	106.6 (4)	Refinen	nent			
C8-C9-C10	116.5 (5)	S1C23C24	115.0 (4)	Dafina	ment on F		$(\Delta/\sigma) = 0.02$	
C9-C10-C11	121.7 (6)	C_{23} C_{24} C_{25}	113.5 (5)	P = 0	110111 011 7 155		$\Delta_{a} = 0.35 e$	Å −3
C10-C12-C12	121.2 (6)	32 - C23 - C24 03' - C26 - 04'	104.8 (3)	$\Lambda = 0.0$))) 7 5		$\Delta p_{\text{max}} = 0.55 \text{ C}$	Å – 3
C8-C13-C12	121.7 (5)	03'-C26-C27	109.2 (4)	WK = 0	0.075		$\Delta \rho_{\rm min} = -0.00$ e	: A
C8-C13-C14	108.4 (4)	O3'-C26-C28	111.9 (4)	S = 0.9			Extinction correct	tion: none
C12-C13-C14	129.9 (5)	O4′—C26—C27	108.5 (4)	2392 re	effections		Atomic scatterin	g factors
N6-C14-C13	106.5 (4)	O4′—C26—C28	109.8 (4)	302 pa	rameters		from Internati	onal Tables
N6-C14-O14	124.6 (4)	C27-C26-C28	112.3 (4)	H-aton	n parameters not		for X-ray Crys	stallography
C13-C14-O14	128.9 (5)	O5'C29O6'	104.5 (4)	refin	ed		(1974, Vol. IV	. Table
C4C15C16	122.5 (4)	05' - C29 - C30 05' - C29 - C31	109.3 (4)	Calcula	ated weights		2.2B)	
C15 - C10 - C17	125.0 (5)	03 - 029 - 031 06' - 029 - 030	109.1(4) 111.2(4)	Culcul	$1/(\sigma^2(E))$		2.22)	
C16-C17-C18	124.0 (5)	00 - 29 - 230 06' - 29 - 231	108.9 (4)	w =	1/[U(r)]			
C18 - C17 - C22	1163(5)	C_{30} $-C_{29}$ $-C_{31}$	113.4 (5)		$+ 0.006/68F^{-}$]			
C17-C18-C19	121.9 (6)	C32-C33-O34	124.6 (10)					
C18-C19-C20	121.0 (7)	C32-C33-O35	118.3 (8)	Table	3. Fractional	atomic d	coordinates and	' equivalent
C19C20C21	118.7 (7)	O34C33O35	117.0 (10)	isotroi	nic displaceme	nt naram	eters $(Å^2)$ for co	mnound(2)
C20-C21-C22	120.9 (7)	C33-035-C36	120.2 (7)	130110	ne uispiacemei	n pur um		<i>mpouna</i> (2)
C17-C22-C21	121.2 (6)	O35—C36—C37	109.2 (8)		$U_{eq} =$	$(1/3)\Sigma_i\Sigma_i$	$U_{ii}a^*a^*a_i.a_i$	
S1—C1′—S2	112.2 (2)				- 04		,,,,,,,,	
C4-N1-C2-C3	-1.0(4)	C24-C25-S2-C1'	61.2 (4)	•••	<i>x</i>	у	Z 0.2020 (4)	U_{eq}
N1-C2-C3-C4	1.0 (5)	C25-S2-C1'-S1	-59.5 (3)	NI C2	0.0169 (5)	0.1151 ()	-0.30/0(4)	0.046 (4)
C2-C3-C4-N1	-0.9(4)	N1-C2'-C3'-O3'	-62.5 (4)	C2	0.1333 (0)	0.2872 (-0.2084(3)	0.055(5)
C3C4N1C2	1.0 (4)	C3'-O3'-C26-O4'	-36.1 (4)	C4	0.1671 (6)	0.0820 (-0.2517(5)	0.055 (5)
C2'-N1-C4-C15	-84.2 (5)	O3'-C26-O4'-C4'	20.9 (4)	05	0.1078 (5)	0.4001 (4) $-0.2653(4)$	0.067 (5)
N1-C4-C15-C16	148.1 (6)	$C_{26} - O_{4'} - C_{4'} - C_{3'}$	1.5 (4)	06	0.4478 (5)	0.3729 (5) -0.0990 (4)	0.066 (5)
C4C15C16C17	177.8(7)	04' - C4' - C3' - 03'	-23.2(4)	C 7	0.6139 (9)	0.3769 (10) -0.0762 (7)	0.089 (10)
$CI_{3} - CI_{0} - CI_{7} - CI_{8}$	-20.8(5)	$C_4 = C_3 = 0_3 = C_{20}$	51.5 (4)	C8	0.1758 (7)	0.0237 (6) -0.1222 (5)	0.056 (5)
C_{4} C_{3} N_{6} C_{14}	68.0(5)	32 - C1' - C2' - C3' - C4'	-1784(5)	C9	0.1551 (7)	-0.1243 (7) $-0.1088(5)$	0.064 (7)
$C_{2} - C_{3} - N_{6} - C_{7}$	-140.4(6)	C2' - C3' - C4' - C5'	97.2 (4)	C10	0.1517 (6)	-0.1921 (7) 0.0139 (5)	0.058 (6)
C3-N6-C7-07	-7.7 (5)	C3'-C4'-C5'-C6'	-173.2 (5)		0.16/6 (9)	-0.1080 ($\begin{array}{ccc} 8) & 0.1341(0) \\ 10) & 0.2488(6) \end{array}$	0.078(8)
C4-N1-C2'-C3'	83.1 (4)	C4'-C5'-C6'-O6'	147.0 (6)	C12 C13	0.1052(11) 0.1462(10)	-0.1773(-0.3289(10) 0.2488(0) 10) 0.2467(8)	0.093(10)
C2-N1-C2'-C1'	106.4 (5)	C5'-C6'-O6'-C29	-36.2 (5)	C14	0.1270 (9)	-0.4168	8) 0.1270 (8)	0.085 (9)
N1-C2'-C1'-S1	-52.1 (3)	C6'	31.2 (4)	C15	0.1331 (7)	-0.3470 (7) 0.0134 (6)	0.067 (6)
C2' - C1' - S1 - C23	-71.8 (3)	06'C29O5'C5'	-12.8 (4)	C1′	-0.2613 (6)	0.0742 (5) -0.2804 (4)	0.047 (5)
\$2C1'S1C23	57.2 (3)	$C_{29} - C_{5'} - C_{5'} - C_{6'}$	-8.8 (4)	S1	-0.5159†	-0.0474†	-0.3450†	0.067 (2)
CI = SI = C23 = C24	-30.0(4)	03 - 03 - 03 - 03 - 03 - 03 - 03 - 03 -	27.2 (4) 71 5 (4)	S2	-0.1537 (2)	0.1114 ()	2) $-0.0917(2)$	0.057(1)
$C_{23} - C_{24} - C_{24} - C_{23}$	-661(5)	$J_7 = J_7 = J_2 = J_0$	11.5 (4)	C2'	-0.1858 (6)	0.0030 (-0.3591(4)	0.042 (4)
025 027 025-02	56.1 (5)			C3'	-0.2/98 (6)	-0.0282 ($\begin{array}{ccc} J & -0.51/4(4) \\ A & -0.5551(2) \end{array}$	0.047 (3)
				C4'	-0.2191(0) -0.2310(7)	0.1290 (-0.551(3) 6) $-0.6055(5)$	0.008(3)
Compound (2)				04'	-0.2358(8)	-0.0468 (-0.7222(4)	0.098 (7)
Crystal data				C5'	-0.3772(8)	-0.3064 (6) -0.6613 (5)	0.068 (7)
		~		O5′	-0.3761 (8)	-0.3818 (5) -0.5468 (5)	0.101 (8)
$C_{27}H_{37}NO_6S_2$		Cu $K\alpha$ radiation		C6′	-0.3328 (12)	-0.3952 (8) -0.7538 (6)	0.094 (11)
$M_r = 535.72$		$\lambda = 1.5418$ A		06'	-0.2560 (8)	-0.4664 ((8) -0.6609(6)	0.060(1)
Triclinic		Cell parameters fro	m 25	06''	-0.3857 (18)	-0.5509 (16) -0.7161(14)	0.064 (3)
<i>P</i> 1		reflections		C16 C17	-0.3608 (7)	-0.2367 ((1) -0.2858(7) (7) -0.1200(7)	0.078 (7)
a = 9.038 (4) Å		$\theta = 6.2 - 40.4^{\circ}$		C12	-0.4092 (9)	-0.2040 ((7) = 0.1290(7) (8) = 0.0704(6)	0.076(0) 0.074(7)
b = 9.488 (4) Å		$\mu = 1.99 \text{ mm}^{-1}$		C19	-0.1856 (8)	0.1208 (-0.6793(5)	0.067 (7)
$a = 10.442.(6)^{1/2}$		$\mu = 1.55 \text{ mm}$ T = 203 V		C20	0.0233 (13)	0.2417 (13) -0.6370 (11)	0.121 (14)
c = 10.445 (0) A		I = 275 K		C21	-0.3065 (11)	0.1539 (10) -0.7932 (6)	0.103 (12)
$\alpha = 92.0/(3)^{\circ}$		rrism	-	C22	-0.3372 (8)	-0.5075 (7) -0.5641 (6)	0.057(1)
$\beta = 109.45 (3)^{\circ}$		$0.53 \times 0.25 \times 0.25$	5 mm	C23	-0.1905 (21)	-0.4750 (19) -0.4222 (15)	0.099 (4)
$\gamma = 120.31 (4)^{\circ}$		Colourless		C24	-0.5182 (18)	-0.6743 (-0.6198(14)	0.087 (3)
V = 705.7 (5) Å ³				C23''	-0.1339 (35)	-0.4554 (-0.4931(26)	0.085 (6)
Z = 1				C24	-0.4750 (23)	-0.0//9(-0.5501 (18)	0.038 (3)
$D_{\rm r} = 1.26 {\rm Mg} {\rm m}^{-3}$					† Coord	linate fixed	to define origin.	
							-	

,

Table 4. Selected geometric parameters (Å, °) for compound (2)			N1—C2' N1—C2' N1—C2'		175.8 (4) - 55.9 (4) - 53.3 (4)	05'—C: C5'—C6 C6'—O	5'—C6'—O6' 5'—O6'—C22 6'—C22—O5'	-17.9 (6) 31.2 (7) -32.2 (6)	
N1C2 N1C4 N1C2' C2C3 C2O5 C3C4	1.368 (6) 1.481 (8) 1.453 (7) 1.536 (9) 1.207 (7) 1.582 (7)	C2'C3' C3'O3' C3'C4' O3'C19 C4'C4' C4'C5'	1.521 (6) 1.434 (6) 1.541 (8) 1.435 (7) 1.417 (6) 1.514 (7)	N1-C2' S1-C1'- S2-C1'- C1'-C2 C1'-C2 C2'-C3	C3'C4' C2'C3' 'C3'C3' 'C3'C4' 'C3'C4' 'C4'O4'	63.4 (4) 51.3 (4) 179.6 (5) 70.4 (4) -173.0 (6) -146.7 (6)	06'C C22O O5'C C5'CC C6'O O6''C	22—05'—C5' 5'—C5'—C6' 5'—C6'—06'' 6'—06''—C22 6''—C22—05' 222—05'—C5'	19.0 (6) -0.6 (6) 22.9 (8) -35.4 (10) 35.5 (10) -21.0 (7)
C3—O6 C4—C8 O6—C7	1.391 (6) 1.481 (7) 1.419 (11)	O4'—C19 C5'—O5' C5'—C6'	1.421 (8) 1.415 (7) 1.532 (12)	Compo	ound (3)				
C8—C9 C9—C10 C10—C11	1.338 (8) 1.457 (7) 1.384 (9)	O5'—C22 C6'—O6' C6'—O6''	1.424 (9) 1.397 (11) 1.421 (15)	Crystal C ₃₁ H ₄₅	data NO ₅ S ₂		Mo Ka	x radiation	
C10-C15 C11-C12 C12-C13	1.392 (8) 1.386 (9) 1.358 (12)	O6'-C22 O6''-C22 C16-C17	1.394 (10) 1.479 (14) 1.504 (9)	$M_r = 5$ Orthorn	75.83 nombic		$\lambda = 0.7$ Cell pa	7107 A arameters fro	om 24
C13-C14 C14-C15 C1' S1	1.382 (12) 1.383 (9) 1.810 (5)	C17—C18 C19—C20	1.508 (11) 1.516 (14)	a = 10 b = 14	.770 (7) Å .355 (10) Å		$\theta = 3.8$ $\mu = 0.$	$8-20.1^{\circ}$ 19 mm ⁻¹	
C1'-S1 C1'-S2 C1'-C2'	1.819 (5) 1.812 (4) 1.548 (8)	C19-C21 C22-C23 C22-C24	1.489 (10) 1.515 (17) 1.486 (16)	c = 20. V = 31	690 (15) Å 98.7 (38) Å ³		T = 29 Prism	3 K	
S1C16 S2C18	1.812 (6) 1.813 (7)	C22—C23'' C22—C24''	1.523 (35) 1.514 (19)	$Z = 4$ $D_x = 1$.20 Mg m ⁻³		0.50 × Colour	0.40×0.2 cless	5 mm
C2N1C4 C2N1C2' C4N1C2'	96.1 (4) 131.9 (4) 131.1 (4)	C3'-C4'-C4' C3'-C4'-C5'	109.7 (4) 103.1 (4) 112.9 (4)	Data co	ollection		٥	20.00%	
N1—C2—C3 N1—C2—O5 C3—C2—O5	91.3 (4) 133.7 (5) 135.0 (5)	04' - C4' - C5' C4' - 04' - C19 C4' - C5' - 05'	107.4 (5) 108.8 (5) 108.7 (5)	Philips ter θ/2θ sc		ractome-	$\theta_{\max} = h = -1$ h = -2	$\begin{array}{c} 28.00^{\circ} \\ 12 \rightarrow 25 \\ 4 \rightarrow 17 \end{array}$	
C2—C3—C4 C2—C3—O6 C4—C3—O6	85.7 (4) 114.7 (5) 118.4 (5)	C4'C5'C6' O5'C5'C6' C5'O5'C22	112.9 (5) 104.5 (6) 109.7 (5)	Absorp	tion correction	on:	l = -1 3 stand	$1 \rightarrow 24$ lard reflection	ons
N1—C4—C3 N1—C4—C8 C3—C4—C8	85.4 (4) 112.6 (4) 115.6 (5)	C5'-C6'-O6' C5'-C6'-O6'' C6'-O6'-C22	102.0 (6) 103.9 (8) 109.9 (6)	6044 m 5651 ir	neasured refle	ections eflections	freq inter	uency: 180 r nsity variatio	nin on: none
C3C7 C4C8C9 C8C9C10	112.8 (5) 124.0 (5) 126.3 (6)	C6'	103.9 (10) 113.4 (5) 113.6 (6)	4412 of [<i>l</i> >	$3.0\sigma(I)$]	ctions			
C9-C10-C11 C9-C10-C15 C11-C10-C15	123.0 (6) 119.7 (5) 117.3 (6)	S2-C18-C17 O3'-C19-O4' O3'-C19-C20	114.1 (5) 106.3 (5) 106.9 (6)	<i>Refinen</i> Refiner	nent ment on F		(Δ/σ)	max = 0.02	
C10-C11-C12 C11-C12-C13 C12-C13-C14	121.0 (7) 120.9 (8) 119.6 (8)	O3' - C19 - C21 O4' - C19 - C20 O4' - C19 - C21	110.6 (5) 109.2 (6) 108 8 (6)	R = 0.0 $wR = 0$)52).061		$\Delta \rho_{\rm max} \Delta \rho_{\rm min}$	$= 0.64 \text{ e } \text{\AA}^{-}$ = -0.76 e Å	-3 A-3
C13C14C15 C10C15C14 S1C1'S2	119.6 (7) 121.6 (6)	C20—C19—C21 O5'—C22—O6' O5'—C22—O6'	114.7 (7) 103.7 (6)	S = 0.6 4400 re	2 eflections		Extinct Atomic	tion correction c scattering f	on: none factors
S1-C1'-C2' S2-C1'-C2' S1'-S1-C16	114.1 (3) 113.3 (3) 101.0 (3)	05'-C22-C23 05'-C22-C23 05'-C22-C24	104.7 (8) 107.8 (8)	H-atom refine	aneters parameters ed	not	for 2 (197	K-ray Crysta 4, Vol. IV,	lography Fable
C1' - S2 - C18 N1 - C2' - C1' N1 - C2' - C1'	101.5 (3) 109.9 (4)	05'-C22-C24'' 06'-C22-C23 06'-C22-C23	117.5 (12) 114.8 (9) 109.5 (8)	Calcula $w =$	ted weights $1/[\sigma^2(F)]$	2-	2.2B	3)	
C1' - C2' - C3' C2' - C3' - O3' C1' - C3' - O3'	111.5 (4) 112.1 (4) 109.9 (4)	06''-C22-C24'' 06''-C22-C23'' 06''-C22-C24''	104.8 (13) 99.4 (10)	Table	+ 0.000362F 5. Fraction	²] al atomic	coordii	nates and e	equivalent
$C_{2} = C_{3} = C_{4}$ $O_{3}' = C_{3}' = C_{4}'$ $C_{4} = N_{1} = C_{2} = C_{3}$	103.4 (4) 9.9 (5)	$C_{23}^{$	117.8 (10) 113.2 (14) 97.7 (5)	isotrop	oic displace	ment parai	meters (E-U-a*a	(Ų) for con	nound (3)
N1-C2-C3-C4 C2-C3-C4-N1 C3-C4-N1-C2	-9.3(5) 8.6(5) -9.7(5)	C3' - C4' - C5' - C6' C3' - C4' - C5' - 05' C4' - C5' - 05' - C22	177.7(7) -66.8(5) -121.4(7)	N1	x 0.7755 (2)	q = (1/3)242 y 0.6967	(2)	z 0.2882 (1)	U_{eq} 0.040 (3)
C2'-N1-C2-O5 O5-C2-C3-O6 C2-C3-O6-C7	-0.3 (6) 51.4 (6) -172.6 (7)	C4'—C5'—C6'—O6' C4'—C5'—C6'—O6'' S2—C1'—S1—C16	100.1(7) 140.8(10) -58.9(4)	C2 C3 C4	0.7270 (3) 0.6261 (3) 0.6860 (3)	0.7513 0.7914 0.7312	(2) (3) (2)	0.3370 (2) 0.2938 (2) 0.2390 (2)	0.046 (4) 0.047 (4) 0.040 (3)
06-C3-C4-C8 C2'-N1-C4-C8 N1-C4-C8-C9	11.6(5) -63.7(5) 120.7(6)	C1'-S1-C16-C17 S1-C16-C17-C18 C16-C17-C18-S2	60.4(4) -66.2(4) 65.0(6)	05 C6 C7	0.7569 (3) 0.6048 (4) 0.5271 (6)	0.7574 0.8958 0.9366	(2) (3) (3)	0.3928 (1) 0.2867 (2) 0.3373 (4)	0.072 (3) 0.059 (4) 0.120 (9)
C4-C8-C9-C10 C8-C9-C10-C11 C8-C9-C10-C15	-176.2(8) 0.9(6) -1786(8)	C17-C18-S2-C1' C18-S2-C1'-S1 O3'-C3'-C4'-O4'	-58.2(4) 57.9(4) -265(5)	C8 C9 C10	0.4329 (7) 0.3519 (6) 0.7390 (3)	0.9026	(4) (5) (2)	0.3694 (4) 0.4143 (4) 0.1821 (2)	0.144 (11) 0.125 (9) 0.043 (3)
C4 - N1 - C2' - C1' C4 - N1 - C2' - C3'	-178.0(8) 127.0(5) -108.1(5)	C3' - C4' - O4' - C19 C4' - O4' - C19 - O3'	-20.5(5) 29.6(5) -21.4(5)	C11 C12	0.8575 (4) 0.6842 (3)	0.8366 0.7857	(3) (3)	0.1927 (2) 0.1247 (2) 0.1247 (2)	0.045 (4) 0.045 (4)
$C_2 - N_1 - C_2' - C_1'$ $C_2 - N_1 - C_2' - C_3'$	- 39.5 (4) 85.4 (5)	C19-03'-C3'-C4'	3.0 (5) 14.5 (4)	C13 C14	0.3697 (3)	0.7392	(2)	0.1030 (2)	0.043 (3)

C15	0.3582 (3)	0.6872(3)	0.1174 (2)	0.057 (4)
C16	0.3562 (4)	0.6507 (3)	0.0563 (2)	0.064 (5)
C17	0.4602 (4)	0.6589 (3)	0.0176 (2)	0.064 (5)
C18	0.5638 (3)	0.7034 (3)	0.0409 (2)	0.054 (4)
C1'	0.7224 (3)	0.5290 (2)	0.2922 (2)	0.041 (3)
S1	0.5850(1)	0.5534(1)	0.3390(1)	0.059(1)
S2	0.7774 (1)	0.4107(1)	0.3056(1)	0.053 (1)
C2′	0.8258 (3)	0.6038 (2)	0.2989 (2)	0.038 (3)
C3′	0.9342 (3)	0.5797 (2)	0.2551 (2)	0.039 (3)
03'	0.8948 (2)	0.5823 (2)	0.1895 (1)	0.047 (2)
C4′	1.0461 (3)	0.6447 (3)	0.2560 (2)	0.043 (3)
04'	1.0859 (2)	0.6473 (2)	0.1902(1)	0.062 (3)
C5′	1.1512 (3)	0.6120 (3)	0.2984 (2)	0.052 (4)
O5'	1.1036 (3)	0.5987 (2)	0.3624(1)	0.070 (3)
C6′	1.2550 (4)	0.6821 (4)	0.3080 (2)	0.077 (5)
O6′	1.2491 (7)	0.7045 (5)	0.3695 (2)	0.228 (12)
C19	0.6438 (4)	0.5352 (4)	0.4206 (2)	0.073 (5)
C20	0.6962 (5)	0.4394 (3)	0.4321 (2)	0.073 (5)
C21	0.8072 (4)	0.4150 (3)	0.3912 (2)	0.066 (5)
C22	1.0050 (3)	0.5895 (3)	0.1524 (2)	0.052 (4)
C23	0.9761 (4)	0.6398 (4)	0.0898 (2)	0.073 (5)
C24	1.0626 (4)	0.4963 (4)	0.1412 (2)	0.078 (6)
C25	1.1741 (5)	0.6513 (4)	0.4071 (2)	0.083 (6)
C26	1.2475 (7)	0.5894 (7)	0.4497 (3)	0.157 (12)
C27	1.0891 (10)	0.7116(7)	0.4447 (4)	0.175 (14)

Table 6. Selected geometric parameters (Å, °) for

compound(3)

	•		
N1-C2	1.380 (5)	C1'-C2'	1,554 (5)
N1-C4	1.487 (4)	S1-C19	1.821 (5)
NI - C2'	1 456 (4)	S2-C21	1 800 (4)
C2_C3	1,520 (5)	$C_{2}^{\prime} - C_{3}^{\prime}$	1 517 (5)
C2C5	1.202 (5)	$C_{2}^{2} = C_{3}^{2}$	1.317(3)
C205	1.202 (3)	$C_3 - C_3$	1.424 (4)
$C_3 - C_4$	1.504 (5)	$C_{3} = C_{4}$	1.525 (5)
C3-C0	1.525 (5)	03 - 022	1.410 (4)
	1.512(5)	$C_4 = 0_4$	1.428 (4)
C6-C7	1.462 (8)	$C4^{-}-C5^{-}$	1.506 (5)
C/C8	1.307 (10)	04 - C22	1.434 (5)
C8—C9	1.457 (10)	CS'-05'	1.433 (5)
C10C11	1.499 (5)	C5'—C6'	1.517 (6)
C10C12	1.326 (5)	O5' —C25	1.414 (6)
C12—C13	1.472 (5)	C6'_O6'	1.312 (7)
C13—C14	1.397 (5)	O6'—C25	1.357 (9)
C13-C18	1.385 (5)	C19—C20	1.505 (7)
C14C15	1.378 (5)	C20-C21	1.505 (7)
C15-C16	1.369 (6)	C22—C23	1.516 (6)
C16-C17	1.382 (6)	C22—C24	1.493 (6)
C17-C18	1.373 (6)	C25—C26	1.481 (10)
C1'—S1	1.803 (3)	C25—C27	1.480 (11)
C1′—S2	1.820 (3)		. ,
C2-N1-C4	93.8 (3)	N1-C2'-C1'	110.7 (3)
C2-N1-C2'	123.4 (3)	N1-C2'-C3'	113.9 (3)
C4-N1-C2'	130.5 (3)	C1'-C2'-C3'	109.9 (3)
N1-C2-C3	93.2 (3)	C2'—C3'—O3'	109.5 (3)
N1-C2-05	129.9 (3)	C2'—C3'—C4'	117.5 (3)
C3-C2-O5	136.8 (4)	O3'-C3'-C4'	103.3 (3)
C2-C3-C4	85.5 (3)	C3'-O3'-C22	105.6 (2)
C2-C3-C6	122.5 (3)	C3' - C4' - O4'	104.0 (3)
C4-C3-C6	122.6 (3)	C3' - C4' - C5'	114 2 (3)
NI_C4_C3	874(2)	04' - C4' - C5'	109.8 (3)
	117 1 (3)	$C_{4}' = 0_{4}' = C_{22}$	108.8 (3)
C3_C4_C10	1163(3)	C4' - C5' - 05'	108.1 (3)
C3_C4_C7	114 3 (4)	C4'-C5'-C6'	115 1 (3)
C5-C0-C7	131 2 (6)	05' - 05' - 06'	103.3(3)
C_{1}^{-} C_{2}^{-} C_{3}^{-} C_{3}^{-} C_{3}^{-}	137.2(0)	C5' - C5' - C0	100.0 (3)
$C_{1} = C_{10} = C_{11}$	127.4(7)	$C_{2} = 0_{2} = 0_{2}$	107.7(3)
$C_4 - C_{10} - C_{11}$	117.4 (3)	$C_{3} = C_{0} = 0_{0}$	104.7 (4)
C4 - C10 - C12	122.0 (3)	$C_0 = 0_0 = 0_{23}$	110.5 (0)
CII - CI0 - CI2	120.1 (3)	SI = CI9 = C20	114.1 (3)
C10 - C12 - C13	129.7 (3)	$C_{19} - C_{20} - C_{21}$	114.9 (4)
C12-C13-C14	125.8 (5)	32 - 021 - 020	114.8 (3)
	119.4 (3)	$03 - 022 - 04^{\circ}$	104.9 (3)
CI4-CI3-CI8	116.8 (3)	03 [°]	109.0 (3)
C13-C14-C15	121.0 (3)	03 [°] —C22—C24	111.5 (3)
C14—C15—C16	120.8 (4)	$04^{\circ} - C22 - C23$	108.4 (3)
C15—C16—C17	119.3 (4)	O4'—C22—C24	110.5 (3)
C16-C17-C18	119.7 (4)	C23—C22—C24	112.3 (4)

C13-C18-C17	122.4 (4)	O5'—C25—O6'	104.2 (5)
\$1—C1′—S2	111.5 (2)	O5'-C25-C26	110.8 (5)
S1-C1'-C2'	114.0(2)	O5'—C25—C27	108.9 (5)
S2-C1'-C2'	113.5 (2)	O6'-C25-C26	111.1 (6)
C1'-S1-C19	100.6 (2)	O6'—C25—C27	110.0 (6)
C1'—S2—C21	100.1 (2)	C26—C25—C27	111.6 (6)
C4—N1—C2—C3	1.8 (3)	C2'-C3'-C4'-C5'	98.0 (4)
N1-C2-C3-C4	-1.7 (4)	C3'—C4'—C5'—C6'	-171.2 (4)
C2-C3-C4-N1	1.6 (3)	C3'—C4'—C5'—O5'	-56.3 (3)
C3-C4-N1-C2	-1.8 (3)	S2—C1′—S1—C19	60.1 (2)
C2'-N1-C4-C10	-101.9 (4)	C1'-S1-C19-C20	- 58.0 (3)
N1-C4-C10-C11	-28.7 (3)	\$1C19C20C21	62.4 (4)
N1-C4-C10-C12	152.0 (4)	C19—C20—C21—S2	-63.5 (4)
C3-C4-C10-C12	-106.7 (4)	C20-C21-S2-C1'	58.7 (3)
C4-C10-C12-C13	-1.5 (3)	C21—S2—C1'—S1	-60.3 (2)
C10-C12-C13-C14	40.3 (4)	N1-C2'-C3'-O3'	-61.2(3)
C10-C4-C3-C6	8.6 (3)	C2'-C3'-O3'-C22	161.5 (4)
C4—C3—C6—C7	168.9 (5)	C4'—C3'—O3'—C22	35.6(3)
C2-C3-C6-C7	-83.9 (5)	C3'-O3'-C22-O4'	-35.9 (3)
C3—C6—C7—C8	-33.9 (5)	O3'-C22-O4'-C4'	21.5 (3)
C6—C7—C8—C9	-172.6 (10)	C22—O4'—C4'—C3'	0.3 (3)
C4—N1—C2'—C1'	-42.5 (3)	O4'-C4'-C3'-O3'	-21.7 (3)
C4-N1-C2'-C3'	82.0 (3)	O4'—C4'—C5'—C6'	72.5 (4)
C2-N1-C2'-C1'	89.4 (3)	O5'-C5'-C6'-O6'	-4.5 (4)
C2-N1-C2'-C3'	-146.1 (4)	C5'-C6'O6'-C25	10.8 (5)
N1-C2'-C1'-S1	-50.3 (3)	C6'O6'C25O5'	-12.4 (5)
N1-C2'-C1'-S2	-179.4 (3)	O6'—C25—O5'—C5'	8.4 (4)
S2-C1'-C2'-C3'	53.8 (3)	C25O5'C5'C6'	-2.5 (4)
C1'-C2'-C3'-C4'	-179.0 (4)		

The absolute configuration was established for all three compounds by comparison of selected Bijvoet pairs and agrees with the known configuration, C2'(R), of the sugar moiety. In (1), a molecule of solvent (ethyl acetate) was found, in which the ketonic O atom O34 exhibits very high anisotropic thermal motion. In (2), one of the isopropylidene rings is disordered. This ring adopts an envelope conformation where atom O6' occupies two positions up and down the mean plane: the adjacent dimethyl groups on C6' are split. Occupancy factors were refined and fixed at $\frac{2}{3}$ and $\frac{1}{3}$. In (3), atom O6' exhibits very high anisotropic thermal motion but no splitting of the methyl groups on C6' was observed. Isotropic temperature factors of the H atoms were set equal to $1.10U_{eq}$ of the bonded C atom. Data collection: Philips PW1100/20 software. Data reduction: PHIL (Riche, 1981). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: SHELX76 (Sheldrick, 1976). Molecular graphics: R3M (Riche, 1983); ORTEP (Johnson, 1963). Software used to prepare material for publication: ACTACIF (Riche, 1992).

Lists of structure factors, anisotropic displacement parameters and H-atom coordinates have been deposited with the IUCr (Reference: PA1106). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Adonias, M., Anaya, J., Càmara, J., Canet, E., Gateau-Olesker, A., Gero, S. D., Grande, M. & Hemando, J. I. M. (1993). *Bioorg. Med. Chem. Lett.* 12, 2547–2552.
- Barton, D. H. R., Gateau-Olesker, A., Anaya-Mateos, J., Cléophax, J., Gero, S. D., Chiaroni, A. & Riche, C. (1990). J. Chem. Soc. Perkin Trans. 1, pp. 3211–3212.
- Burnett, D. A., Clader, J. W., Thiruvengadam, T. K., Tann, C. H., Lee, J., McAllister, T., Colon, C., Barton, D. H. R., Breslow, R. & colleagues (1991). Eur. Patent 524 595; *Chem. Abstr.* (1993). 119, 117027f.

Firestone, R. A., Barker, P. L., Pisano, J. M., Ashe, B. M. & Dahlgren, M. E. (1990). *Tetrahedron*, 46, 2255–2262.

- Hagmann, W. K., Shah, S. K., Dorn, C. P., O'Grady, L., Hale, J. J., Finke, P. E., Thompson, K. R., Brause, K. A., Ashe, B. M., Weston, H., Dahlgren, M. E., Maycock, A. L., Dellea, P. S., Hand, K. M., Osinga, D. G., Bonney, R. J., Davies, P., Fletcher, D. S. & Doherty, J. B. (1991). Bioorg. Med. Chem. Lett. 1, 545–550.
- Hagmann, W. K., Thompson, K. R., Shah, S. K., Finke, P. E., Ashe, B. M., Weston, H., Maycock, A. L. & Doherty, J. B. (1992). *Bioorg. Med. Chem. Lett.* 2, 681–684.
- Han, W. T. (1990). US Patent 5 037 819; Chem. Abstr. (1991). 115, 232060r.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Maillard, J. L., Favreau, C., Reboud-Ravaux, M., Kobaiter, R., Joyeau, R. & Wakselman, M. (1990). Eur. J. Cell Biol. pp. 213–218.
- Mascaretti, O. A., Roveri, O. A. & Danelon, G. O. (1993). Recent Progress in the Chemical Synthesis of Antibiotics and Related Microbial Products, Vol. 2, edited by G. Lukacs, p. 677. Berlin: Springer-Verlag.
- Riche, C. (1981). PHIL. Program for Data Reduction for Philips PW1100 Diffractometer. Institut de Chimie des Substances Naturelles du CNRS, Gif sur Yvette, France.
- Riche, C. (1983). R3M. Représentation et Manipulation de Modèles Moléculaires. Institut de Chimie des Substances Naturelles du CNRS, Gif sur Yvette, France.
- Riche, C. (1992). ACTACIF. Logiciel de Préparation des Fichiers CIF. Institut de Chimie des Substances Naturelles du CNRS, Gif sur Yvette, France.
- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.

almost perpendicular to the adenine ring system. Hydrogen bonds between the amino groups and two adenine N atoms connect the molecules in chains parallel to the c axis.

Comment

The title compound, (I), was isolated as a reaction intermediate in the preparation of the building blocks of PNA, the peptide analogue of DNA (Nielsen, Egholm, Berg & Buchardt, 1991; Egholm, Buchardt, Nielsen & Berg, 1992). Details of the preparation of the compound will be published elsewhere (Egholm et al., 1994). The structure determination was undertaken to establish where the substitution in the adenine ring had occurred and to elucidate how a bulky substituent influences the hydrogen-bonding pattern. The molecular geometry is illustrated in Fig. 1 and by the bond lengths and angles in Table 2; these values are in excellent agreement with those found in other structures containing the adenine ring system (Stewart & Jensen, 1964; Lai & Marsh, 1972; Wilson, Tollin & Howie, 1986; Low, Tollin & Howie, 1987).

Acta Cryst. (1994). C50, 1480–1482

Ethyl 9-Adeninylacetate at 122 K

CLAUS FLENSBURG

Centre for Crystallographic Studies, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark

MICHAEL EGHOLM[†]

Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark

(Received 24 March 1994; accepted 25 April 1994)

Abstract

The structure of the title compound, $C_9H_{11}N_5O_2$, at 122 K has been established by X-ray diffraction methods. The ethyl acetate moiety is virtually planar and

The structure determination revealed that the substitution had occurred at the 9 position. The ethyl acetate fragment adopts an extended conformation. The six atoms of this moiety are coplanar with a maximum deviation from the least-squares plane of 0.041 (1) Å for O31. This plane is almost perpendicular to the least-squares plane defined by the adenine ring system, the angle between the two planes being 84.46 (4)°, and the torsion angle C8-C9-C22-C21 being 104.65 (13)°. This conformation differs significantly from the one found for other substituents in this position; in adenosine (Lai & Marsh, 1972) the equivalent torsion angle is 9.9°. The two H atoms of the amine group are potential hydrogen-bond donors and as well as atoms N1, N3 and N7 of the adenine ring, O21 of the ethyl acetate fragment could also be a hydrogen-bond acceptor. However, the hydrogen-bonding pattern is similar to that found in 9-methyl adenine (Stewart & Jensen, 1964) with N16—H162···N1 and N16—H161···N7 hvdrogen bonds connecting molecules related by translational symmetry along the c axis (Table 2, Fig. 2). The plane through the adenine ring is almost parallel to the ab plane and the side chains are oriented so that they fill the space between the adenine ring planes of neighbouring molecules.

> Acta Crystallographica Section C ISSN 0108-2701 ©1994

[†] Present address: Millipore Coporation, Core Research & Development, 75A Wiggins Avenue, Bedford, MA 01730, USA.